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An experimental study is made of nonlinear interactions in a laminar free shear 
layer. Two disturbances (fl and f,), excited by sound, amplify and grow in- 
dependently for small amplitudes. At larger amplitudes the disturbances interact 
to generate fluctuations of sum and difference frequencies (f, +JJ. Harmonics 
and subharmonics offi andf, are also generated and all fluctuations interact to 
generate additional fluctuations of the form (nf2/m) f (pfl/q); n, p = 1,2,3, . . . , 
m, q = 1,2. Nonlinear mode competition suppresses the growth of fi or f,, 
depending on their relative amplitudes, and contributes to finite amplitude 
equilibration. An upper bound on the modal integral of total @m.s. fluctuation 
energy is found. Fluctuation energy tends to be distributed among all possible 
frequency components, and its upper bound does not increase as the number of 
components increases. 

1. Introduction 
An important feature of any naturally occurring flow is the presence of many 

disturbances which can cause instability and which can subsequently interact 
with one another when they grow to sufficiently large amplitudes. Sat0 (1970) 
observed the generation of sum and difference fluctuations in the instabiIity of 
a laminar wake. These frequency components arise from the interaction of dis- 
turbances and must play animportant role in turbulence, where many fluctuations 
are present. 

In  an attempt to model this feature of natural flows, the present experiments, 
like those of Sat0 (1970), were designed such that two unstable modes, fi andf,, 
of the free shear layer could be simultaneously excited. f2 is the most unstable 
mode of the shear layer and fl is a less unstable, lower frequency fundamental 
mode. fl was chosen to be the fundamental frequency which local stability 
calculations predicted to be the most unstable mode of the measured mean 
velocity field at the point where nonlinear interactions start to become im- 
portant. 

In  Sato’s experiments, two unstable modes of a symmetric laminar wake were 
excited. Their frequencies differed by 10 %. The present experiments consider 
the problem of exciting two unstable modes of a laminar asymmetric free shear 
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FIGURE 1. (a) Schematic of experimental set-up and initial mean velocity field. The three 
instabilities studied are indicated below, where the shem layer is pictured as a nonlinear 
black box. I ( f i )  is instability excited at fl. I ( f z )  is instability excited at  fz. I ( f i , f z )  is 
instability excited a t  fi and fz simultaneously. ( b )  Excitation signal for: fz = 22.5 Hz 
instability (bottom); fi = 29.5 Hz instability (top); fl = 22 Hz, fz = 29.5 Hz dual in- 
stability (middle). (c) Lissajous phase pattern for fl and fz in the dual-excitation in 
stability. 
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layer whose frequencies differ by 25 yo. Although the experiment differs from 
Sato’s in mean flow and excitation frequencies, basic similarities are observed. 
The experiments are an extension of those of Miksad (1972)’ which studied the 
natural and excited instability of a free shear layer. 

2. Experimental procedure 
The basic apparatus was the low turbulence, open-return wind tunnel de- 

scribed in Miksad (1972). Disturbance fluctuations were excited by sound, and 
measurements made with a Shapiro-Edwards Model 50 constant-current hot- 
wire anemometer. Two excitation signals, obtained from a common reference 
signal, were fed to an audio amplifier and then to a loudspeaker. The ratio of the 
excitation frequencies was fl: f2 & 3: 4. The relative phase of the signals was con- 
stant during the experiments. Sound disturbances were injected into the upper 
stream only. The injected disturbance field was of order 10-3r.m.s. measured 
in terms of UT, the velocity of the upper stream. The respective excitation 
amplitudes of fl and f 2  could be varied, but were normally set equal. The ex- 
cited instabilities grew with downstream distance and were initially described 
by spatial linear inetability theory. 

In  order to determine which of the subsequent nonlinear features of instability 
were due to cross-interactions between the two excited fundamentals, the ex- 
periments were run in three stages, and in effect the shear layer was treated as 
a classic nonlinear black box. As indicated in figure 1, the features of instability 
due to cross-interactions between fland fi were identified by comparing the dual- 
excitation instability with instabilities excited a t  fi or f 2  alone. These latter 
two experiments served to identify the nonlinear effects which occur when 
cross-interactions are not possible, and only self-induced nonlinear mechanism s 
are present. As noted in figure 1, the dual-excitation instability was not in general 
a simple superposition of the two instabilities excited at fl and fi individually. 
Superposition only held in those regions of instability where the disturbance 
amplitudes were very small. 

3. Mean velocity field 
Figure 2(a)  shows the mean velocity field U(x,y)  when fl = 22Hz and 

fi = 29-5Hz are simultaneously excited. x is the downstream distance and y is 
normal to x and to the mean vorticity vector. The mean velocity fields during 
natural instability and during excitation at  fi = 29.5Hz are given in Miksad 
(1972). Note the close similarity of the velocity field in the present experiments 
to that measured by Miksad during excitation at f2 alone. It clearly differs from 
the mean velocity field given in figure 2 (b ) ,  when only fi is excited. The co- 
ordinate reference frame for these plots is given in Miksad (1972, figure l b ) .  

1-2 
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FIGURE 2. (a)  Vertical profiles of mean velocity U ( z ,  y) and contours of constant velocity 
when f, and fi are simultaneously excited. f, = 22 Hz, fi = 29.5 Hz. Contour interval is 
Ti/TiT = 0.05.G~ = 201 c m / s , G ~  = 38 cm/s, R, = AG.B,(z,)/v = R(z,) = 145. (b)Vertical 
profiles and contours of G(z, y) whenf, = 22.5 Hz is excited. R(z,) = 145. 



Transition of a free shear layer 5 

--.---d. 

h 

02 Ah-x=2.00 

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 

Frequency (Hz) Frequency (Hz) 

FIGURE 3. R.m.s. frequency spectra whenj”, andf, are simultaneously excited. y = 0.2 cm, 
fi = 22 Hz,f2 = 29.5 Hz,  R(z,) = 150, filter bandwidth = 1.0 Hz, sweep speed = 0.55Hz/s, 
time constant = 1 s. x measured in centimetres. 
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FIGDRE 4. Spectra of higher frequency components when fi and fi are simultaneously 
excited. fi = 22 Hz, fi = 29.5 Hz, y = 0.2 cm, R(x,) = 150. x measured in centimetres. 
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FIGURE 5. Representative frequency components in the instabilities resulting from ex- 
citation at (a)fl = 22.5 Hz alone; ( b ) f 2  = 29.5 Hz alone; (c)fl = 22 HZ andf, = 29.5 Hz 
simultaneously. R(z,) = 150. 

4. Experimental results 
Figure 3 shows frequency spectra of streamwise velocity fluctuations when 

fi and f 2  are excited at equal initial amplitudes. The two disturbances grow 
simultaneously. At x = 4.00 em small fluctuations at 52 Hz, the sum frequency 

f 2  + fl, are noticeable. Fluctuations near 7.5 Hz, the difference frequency f 2  -ti, 
appear a t  x = 5*00cm, and by x = 7-00cm fluctuations at other sum and dif- 
ference frequencies (nf2/m) (pfJq), n,p = 1,2,3,  ..., m, q = 1,2, are present in 
the spectra. Harmonics and subharmonics of fl and f 2  can also be identified. 
Figure 4 uses the same amplitude scale as figure 3, and shows the presence of 
many small amplitude fluctuations in the 100-200 Hz range. In  all, more than 
29 frequency components can be identified in the instability spectra. 

Figure 5 shows three representative spectra taken during excitation at 
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Mode Frequency (Hz) Max u:.~,~,/uT Signal clarity 

fl 
f 2  

f 2  -f, 

f 2  +fl 
2f2 01' 2fi+*f2 
3f 1 
2fl+f2 
2fi+fl 
3f 2 

3fi + f 2  

2(f 2 +fl ) 

22 
29.5 
7.5 

11 
14.75 
37 
44 
51.5 
59 
66 
73.5 
81 
88.5 
95.5 

103 

0.035 
0.110 
0.150 
0.002 
0.085 
0.030 
0.012 
0.020 
0.046 
0-013 
0.01 1 
0.012 
0.013 
0*010 
0.008 

Very sharp 
Very sharp 
Sharp 
Barely detectable 
Somewhat intermittent 
Sharp 
Somewhat intermittent 
Sharp 
Very sharp 
Sharp 
Somewhat intermittent 
Sharp 
Sharp 
Sharp 
Somewhat intermittent 

TABLE 1. Maximum u:,,.,,/&T amplitudes and signal clarity for frequency components in 
the spectra of the instability excited at fl = 22 Hz and f 2  = 29.5 Hz simultaneously 

a )  fl = 22.5Hz alone; (b) f 2  = 29.5 Hz alone; and (c) fl = 22 Hz  and f 2  = 29.5 H z  
simultaneously. The significant frequency components are labelled with the 
probable interaction which generated them. An indication of maximum u ; . ~ , ~ .  
amplitude and general signal clarity (based on lack of intermittency and sharp- 
ness of spectral energy concentration) is given in table 1. 

The development of the transition, once nonlinear effects become important, 
can be followed in figure 6 .  In  this plot, variations in <.m.s.(~, y)/?iT with down- 
stream distance (x) ,  and vertical location ( y )  are given for significant frequency 
components. The splitter plate which forms the vertical shear layer is located 
a t  the mid-point of the y axis and lies in the ~;.~.~./'il~, x axis plane. The x axis 
covers the entire range from initial instability to the onset of turbulent break- 
down. 

A more quantitative description of the transition is given in figure 7, where 
downstream values of u~.,.,.ITiT maxima are plotted for most of the frequency 
components generated by nonlinear interactions. 

5. Discussion of the results 
Figures 8 and 9 show the growth of u : . ~ , ~ .  maxima when the flow is excited at 

fl and a t  fi respectively. These two figures provide a reference for the develop- 
ment of instability in the absence of disturbance interactions. It is clear from 
figure 7 that the dual-excitation instability is not a simple superposition of the 
two individually excited instabilities. The transition is clearly influenced by 
disturbance interactions. 

However, the overall development of instability has basic similarities to the 
case when disturbance interactions are not important. In  downstream order, 
the following features are observed in the dual-excitation transition: (i) a small 
amplitude region where disturbances grow exponentially and independently; 
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FIGURE 6(a) .  For legend see facing page. 

(ii) a nonlinear region where harmonics, subharmonics and combination modes 
are generated and mode competition takes place; (iii) a region of finite amplitude 
equilibration of the growing disturbances; (iv) a second region of subharmonic and 
(fi -fi) difference-mode growth. Smoke trace and spanwise phase measurements 
then show that (v) three-dimensional distortions appear and develop into a 
streamwise vortex structure; (vi) secondary instabilities preceed the transition 
to  turbulence. 

A comparison of this brief description with that given by Miksad (1972) for 
instabilities excited at a single frequency will reveal the basic similarities. The 
major differences arise from disturbance interactions (i,e. combination-mode 
generationand mode competition) and the large number of frequency components 
which share the available fluctuation energy. 

5.1. Small amplitude growth and the breakdown of linear superposition 

Table 2 shows spatial growth rates - ai measured for several frequency compo- 
nents. The respective growth rates of fi and f2 during dual excitation are close 
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FIGURE 6. Vertical profiles of u&,,Jii~ for frequency components in the instability excited 
at  fi = 22 Hz and fi = 29.5 Hz simultaneously. R(z,,) = 150. Profiles made at 0.5 om 
downstream intervals. (a) fl = 22 Hz, amplitude axis = 0.155 full scale; fi = 29.5 Hz, 
0.155 full scale; fi-fl = 7*5Hz, 0.155 full scale; +fi = 14.75Hz, 0-155 full scale. 
(b) (fi+fi) = 51.5 Hz, amplitude axis = 0.055 full scale; fi+ (fi-fi) = 37 Hz, 0.055 full 
scale; Z i t  = 44 Hz;  0.055 full scale; 2f2 = 59 Hz, 0.055 full scale. 

to the values measured when each disturbance is individually excited. The 
growth rates of nonlinearly generated modes are measured from their point of 
generation. 

Maximum U ; . ~ . J G ~  amplitudes of fi and fi, shown in figure 7, are less than 
0.02 during the first 3-00 em. A comparison with figures 8 and 9 shows that, for 
x < 3.00 em, the dual-excitation instability is a superposition of the individually 
excited instabilities. The superposition breaks down as disturbances grow to 
large amplitudes and interact with each other. In  the present experiments, the 
linear concept of superposition is only valid for disturbance amplitudes less than 
0.02 times 5,. This is a much smaller amplitude than that normally assumed 
for the breakdown of linear theory. It indicates a strong limitation on the applic- 
ability of linear approximations. 
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FIGURE 7 (a-c) . For legend see facing page 
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FIGURE 8. Downstream values of u : ,~ ,~ ,  maxima in the instability excited at  fl = 22.5 Hz 
alone. x ,fl; 0, 2f1; A, 3f1; 0, +fl; V, $fl. R h )  = 145. 

5.2. Generation of combination modes 

The generation (or to be more accurate the first measurable appearance) of 
fluctuations at sum and difference frequencies f2 f fl coincided with the emergence 
of second-harmonic fluctuations 2f2 and 2f1. Once the 2f1, 2f2 and f2 f fl fluctua- 
tions had been generated, higher harmonics nfl and pf2 ( n , p  > 2), subharmonic 
fluctuations 4 fi and f2 and additional combination modes of the form 

(nf2/m) * (pf l /a)  (n, P = k 2 , 3  ... ; m, P < = 1, 2) 

were generated in what appeared to be a continuous downstream sequence. The 
downstream intervals between new frequency components presumably represent 
the distance needed for previously generated fluctuations to grow to large enough 
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FIGURE 9. Downstream values of u:,,,~, maxima in the instability excited at  f i  = 29.5 Hz 
alone. x ,  f 2 ;  0, 2 f , ;  v, 3f2; a, i f 2 ;  A, $ f 2 .  R(z,) = 145. Data taken from Miksad(1972). 

Mode -a, = -a: x 2@,(2,) Mode -a! = -a, x 28,(2,) 

f i  - f  I 0.246 2fl  or 8fi 0.109 
f i + f l  0.209 2f 2 0.220 

f i  0.144 t f  2 0.285 
f 2  0-198 f l +  if2 orf2+(.f2-f1)  0-276 

TABLE 2. Initial oxponential spatial growth rates - a, of significant frequency components 
in the instability excited at  f l  = 22 Hz and f 2  = 29.5 Hz simultaneously. Growth rate of 
fi measured when fl = 22.5 Hz alone is excited is 0.138. Growth rate off2 when f2 = 29.5Hz 
alone is excited is 0.200. 

amplitudes for further interaction. For example, in figure 6, we can see that the 
frequency component due to the interaction of f2 with the difference mode only 
appearsafter both f2 and f 2  - fl reach amplitudes sufficient for efficient interaction. 
Note also the nested pattern of growth and decay for successively higher fre- 
quency components (generated by higher order interactions) in figure 7.  

It is also interesting to note in figure 7 that f2 -fl and if2 both enter a second 
region of growth at  x = 11.00 em. This second region of growth occurs only after 
the two fundamentals equilibrate into relatively constant amplitude fluctuations. 
Kelly (1967) showed that this second region of if2 subharmonic growth may be 
due to the finite amplitude oscillations of f2. His mechanism involved the interac- 
tion of two disturbances to give a subharmonic component. A similar mechanism 
may trigger the post-equilibration growth of fa - fi. 

In  identifying probable interactions in table 1, most combination-mode 
fluctuationsare assumed to result from the interaction offi and f2 with each other, 
with each other's harmonics and subharmonics, and with previously generated 
combination modes. However, combination modes can also arise from interac- 
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tions which do not include fl and f2 directly. The 59 Hz fluctuation, for example, 
could result from an interaction of 2fl with if2. 

The choice offl = 22 Hz made it impossible to discriminate between 2f1 = 44Hz 
and 8 f2 = 44-25 Hz. The behaviour of fluctuations at 44 Hz, however, indimte 
that 2fl and #f2 are both present. Ea.ch seems to dominate in the region of transi- 
tion best suited to its dynamics. For example, the strong initial growthand 
sharp energy concentration of fluctuations a t  44 Hz prior to equilibration, and 
their tendency to decay after equilibration, is similar to the behaviour of 2fi 
when fl alone is excited. However, after a small period of post-equilibration decay 
(see figure lo), the 44 Hz fluctuation encounters a second region of strong growth, 
just as 4 fi does when f 2  alone is excited. 

5.3. InJuence of disturbance interactions on finite amplitude equilibration 

In  figure 7 the growth of fl can be seen to deviate from its initial exponential rate 
at  x = 4-00cm. In  contrast the growth rate of fi in figure 7 remains unchanged 
at x = 4.00 em. The amplitude of f2 in figure 7 at x = 4.00 cm is ui.m.s./;llT = 0.02, 
more than twice that of fit and it is clearly the dominant disturbance. It is 
worth noting in figure 8 that the growth of fl is unchanged at  x = 4.00 em when 
i t  is individually excited. The growth of fl during dual excitation is clearly 
influenced by the finite amplitude fluctuations of f2. 

Atx = 5.00 em, thegrowthoff,also starts to deviatefromitsinitial exponential 
rate, and f2 joins fl in equilibrating into constant amplitude fluctuations at  
x = 7-00cm. The equilibration amplitude of f2 is u ~ . ~ . ~ . / U ~  = 0.108, which is 
slightly less than the value of ui.,.,./UT = 0.12 measured when f2 alone is excited 
(see figure 9). The equilibration amplitude of fl is u~.m.s./;ilT = 0.0237, and is 
much smaller than the value of = 0.14 measured when fl alone is excited 
(see figure 8 also). 

In  general, the growth and equilibration of fi (during dual excitation) is only 
slightly influenced by the small amplitude fluctuations of fl. This can be seen by 
comparing figures 7 and 9. 

The phenomena of growing disturbances equilibrating into constant finite 
amplitude oscillations is observed in many fluid flows. Taylor (1923) and Coles 
(1965), amongst others, have observed that growing perturbations in the flow 
between two rotating cylinders eventually equilibrate into constant amplitude 
oscillations (the so-called Taylor vortices). Similar steady finite amplitude 
motions are also observed in the form of B6nard cells in thermal convective 
instability. 

Stuart (1962) showed that the basic features of the dual-mode equilibration 
process can be identified in a simple model which considers the interaction of two 
disturbances fl and f2 in a parallel flow. The equations governing the two dis- 
turbances can be shown (see Stuart 1962) to have the form of two coupled 
Landau equations: 

(5.1) 

(5.2) 

d I A 12/dx = 2 I A I { - a% + a; \A  I + a; IBI 2}, 

dlBl2/dx = 2 IB I { - a& + b z  IB 1 + b2 / A  1 2}. 
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,4 and B are the amplitudes of fl and f 2 ,  and -a& and -a:B are their initial 
exponential spatial growth rates. The self-Landau coefficients u; and bg repre- 
sent nonlinear mechanisms which limit disturbance growth, whether or not 
a second disturbance is present. The cross-Landau coefficients ag and b; represent 
the additional constraints imposed by disturbance interactions. The equilibra- 
tion of fl and equilibration of f 2  are linked through their nonlinear interaction. 
Mode competition, combination-mode generation, mean flow distortion and 
harmonic-mode generation influence the equilibration process.? 

At equilibration, dlAI2/dx = 0, dlB12/dx = Oand equations (5.1) and (5.2) have 
the four solutions (see Stuart 1962) 

pep = 0, IBe12 = 0 ;  (5.3) 

IA,12 = aTA/a:, (B,(2 = 0; (5.4) 

= 0, JBeI2 = a&/b;; ( 5 . 5 )  

(5.6) 

Solution (5.3) implies that fl and f2 are not unstable modes or are not excited. 
Solutions (5.4) and (5.5) represent the single-excitation experiments when fi and 
fi are individually excited. Solution (5.6) represents the dual-excitation ex- 
periments. 

The self-Landau coefficients uz and b i  can be determined from the initial 
growth rates and equilibration amplitudes of the single-excitation experiments. 
In  dimensionless form 

UA = - 5-75, bB = - 12'8. 

Using these values for a, and b, and the growth rates and equilibration ampli- 
tudes measured in the dual-excitation experiments, equations (5.1) and (5.2) 
can be solved at  equilibration for aB and b,. In  dimensionless form 

U B  = - 12.15, b, = -90. 

The calculated valuesof self- and cross-Landau coefficientsrepresent amplitude- 
dependent mechanisms and only have meaning when weighted with the appro- 
priate disturbance amplitudes. The amplitude-weighted terms in the coupled 
Landau equations have the following values at  equilibration. 

Theory: 

Experiment : 

- C C ~ A  + uA~A,( '/Ti$ + uB( Be( '/lU$ = 0. 

[0*144] - [0.0031] - [0*141] + 0. 

t Finite amplitude mode competition and reduced equilibration amplitudes also occur 
in thermal plasma instability. Lashinsky (1965) showed that the energies of two growing 
modes in a thermal plasma are governed by equations similar to (5.1) and (5 .2 ) .  His 
experiments also show that the eventual equilibration amplitudes of the two modes are 
determined by the extent of their interaction with one another, and by their initial 
exponential growth rates. In plasma instability, - a i ~  and - a , ~  again represent initial 
linear theory growth rates ; a~ and b B  represent inherently nonlinear self-damping plasma 
mechanisms such as ion Landau damping; and aB and b A  represent mode-coupling damping 
effects. 
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FIGURE 10. Downstream values of shear-layer momentum thickness after wake deficit 
is eliminated. *, natural instability ; a, instability excited at fi = 22.5 Hz alone ; 0, in- 
stability excited at  fi = 29.5 Hz alone; =, instability excited at fi = 22 Hz and 
fi = 29.5 Hz simultaneously. 

Theory: - a<, + b, I Be/ "& + b, [A, 12/2c$ = 0. 

Experiment : [0.198] - [0*148] - [0.5] 5 0. 

The model we have used to compute the Landau coefficients is for a parallel 
flow. Ru-Sue KO, Kubuta & Lees (1970) considered the influence of mean flow 
spreading on the equilibration process in wakes. It is not clear from our results 
whether the influence of spreading in free-shear-layer equilibration is small or is 
counterbalanced by other dynamic processes. 

It should be noted that the unweighted self- and cross-Landau coefficients 
represent potential growth limiting mechanisms. The potential realized depends 
on disturbance amplitude. Thus, although 6 ,  is potentially larger that aB we 
see from the weighted terms that the actual influence of f, on the equilibration 
of fl is twice as great as that of fl on the equilibration of f,. 

Additional less systematic and quantitative experiments (in which the relative 
initial amplitudes offl and f, were varied) indicated that A, and B, are sensitive 
to changes in initial conditions. For example, in the experiments just described, 
the excitation amplitudes of ,fl andf, were set equal to each other and to the 
value used in the single-excitation experiments. The larger growth rate of f, 
ensured that it reached a finite amplitude first, and the equilibration amplitude 
of fl, the smaller amplitude fundamental, was reduced. If, however, fl was 
excited a t  a large amplitude relative to f 2  it grew to finite amplitude first and 
the equilibration amplitude of f2 was reduced. If the excitation amplitudes were 
adjusted so that both disturbances reached finite amplitude together, the 
equilibration amplitudes of both components tended to be reduced, but not as 
strongly as when one component is clearly dominant. This latter behaviour has 
also been observed by Sat0 (1970) in symmetric wakes. In  general, mode com- 
petition and growth suppression seems to be determined by the disturbance 
which reaches finite amplitudes of order u;.,.,./UT = 0.02 to 0.03 first. 
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The importance of initial conditions (or external conditions as in experiments 
in which artificial excitation is used) on wavenumber selection has also been 
observed in centrifugal and thermally driven instabilities. Snyder (1969) notes 
that the wavenumber of finite amplitude secondary motion in the Taylor-vortex 
problem is sensitive to initial conditions. This can also be seen in the experiments 
of Coles (1965). Chen & Whitehead (1968) found that thermal convective motions 
corresponding to wavenumbers other than the value at  critical Rayleigh number 
can be obtained by selective external forcing before the critical Rayleigh number 
is reached. Similar results have been obtained on theoretical grounds by Newell & 
Whitehead (1969) and Newell, Lange & Aucoin (1970). 

5.4. Influence of mean flow distortions 

Mean flow distortions can play an important role in finite amplitude equilibration 
(see Stuart 1958). Figure 10 shows downstream changes in the shear-layer 
momentum thickness. Note the similarity of the development of the shear layer 
during dual excitation and during excitation a t  fi only. The abrupt increase in 
0, at x = 5.00cm coincides with deviation from exponential growth and the 
onset of equilibration. 

The amplitudes offlandoff, (whenbothareexcited) areoforderuk.,.,./ii, = 0.02 
and 0.06 respectively at the onset of spreading. It is interesting to note that the 
amplitude of f2 (when it alone is excited) is also of order U ~ . ~ . , . / E ~  = 0-06 at the 
onset of spreading. The dominance of f2  in both experiments and the basic 
similarity in mean flow development suggest that spreading in both cases is 
determined by the finite amplitude Reynolds stress of f,. The slightly faster rate 
of sprea.ding measured during dual excitation seems to be mainly due to the 
additional distortions caused by the small amplitude fluctuations of fl. 

The experiments of Miksad (1972) also point to the importance of mean flow 
distortions in the equilibration process during single-mode excitation. The 
similarity of the shear-layer development during dual excitation and during f 2  

excitation suggests that the major influence of f 2  on the growth and equilibration 
of fl may be due to the dominant distortion of the mean flow by f,. This leads to 
a velocity field which is apparently unsuitable for fl growth. The additional 
presence of small amplitude fluctuations offl only serve to distort the mean flow 
even more from the pattern observed during fi excitation. Presumably, the mean 
flow development during fl excitation is most efficient for fl growth and it is 
not surprising that, in a velocity field similar to that observed whenf, is excited, 
the growth and equilibration of f2 is not significantly changed, while that of fl 
is drastically altered. 

5.5 .  Spectral distribution of fluctuation energy 

The vertically integra,ted U;~~. , . /E$  energy of various frequency components in 
the dual excitation and the single-mode excitation instabilities are plotted in 
figures 11, 12 and 13; where for a given frequency component 



17 

10-1 

10-3 

6 
1 0 - 4  

10-5 

10-6 

1 0 - 2  

10-3 

1 0 - 6  

A 

d 

4 

0 5 10 15 20 25 

x (cm) 

FIGURE 1 1. Downstream values of E, for various frequency components in the instability 
excited at fi = 22 Hz and fa = 29.5 Hz simultaneously. (a) 0, fi; x , f a ;  0, f2 -fi; 
A,fz+fi. R(z0) = 150. (b )  0, &.f2; V , f ~ + ( f ~ - f i ) ;  A, 2fi or #fa; 0, 2f2. R(xo) = 150. 

2 FLM 59 



18 R. W .  Miksud 
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FIGCRE 12. Downstream values of E, for various frequency components in the instability 
excited atf l  = 22.5Hz alone. x , f i ;  0, 2f1; A, 3f1; 0, &fl; V, 2f1. R ( ~ o )  = 145. 

x (cm) 

FIGURE 13. Downstream values of E, for various frequency components in the instability 
excited at  f z  = 29.5 Hz alone. x , fi; 0, 2fz; A, 3fz; 0, ifi; V, #ti. R(zo) = 145. Data 
taken from Miksad (1972). 
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' d  I- 

FIGURE 14. Downstream values of total disturbance energy ET, defined as the s u m  of the 
respective E,  energies of all frequency components present in each instability. a, in- 
stability excited at  fl = 22.5 Hz alone; 0, instability excited at  fz = 29.5 Hz alone; 
m, instability excited at fl = 22 Hz andfz = 29.5 Hz simultaneously. 

L is much larger than the shear-layer thickness, and Ob(x0) is the sum of the 
momentum thicknesses of the two boundary layers prior to merging a t  the 
splitter plate edge. 

In  comparing the development of the spectral distribution of u ; . ~ . ~ .  energy in 
the dual-excitation instability (Bee figure 11) with that of the two single-excitation 
instabilities in figures 12 and 13, one notices a lack of consistency in the alIocation 
of energy amongst the various components. Many additional frequency com- 
ponents are present in the dual instability, and although the harmonics and 
subharmonics of f2, the dominant fundamental, tend to dominate, no obvious 
overall allocation pattern can be identified. The maximum energy of 2f1 in the 
dual instability, for example, is almost two orders of magnitude smaller than that 
of 2fl in the fl single-excitation instability. Also, although +f2 tends to have the 
same initial pattern of development in the dual-excitation and f2 single-excitation 
instabilities, it is the difference mode f2 - fl which dominates the downstream 
stages of the dual instability. 

In  considering the meaning of these differences in spectral energy develop- 
ment, we must bear in mind that all three instabilities are heading towards the 
same end state-namely turbulence-which we do not expect to depend on 
initial conditions or the manner of instability which leads to it. This in fact seems 

2-2 
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to be true in the present experiments, as spectra taken far downstream, where the 
flow has become turbulent, show the same basic distribution of energy in each 
instability. 

There is another feature of the flow, however, which, even before turbulence is 
reached, does not seem to depend on initial conditions, or the details of instability. 
Namely, the total energy E,T of all fluctuations once nonlinear effects 
dominate the flow, where E,' is defined as the sum of the integrated E, energy of 
all major frequency components in the disturbance spectra. 

Measurements of total fluctuation energy E,T are shown in figure 14. They 
indicate that in each instability the sum of the energies of all frequency com- 
ponents has an upper bound of roughly E," = 0.1. It is significant t o  note that the 
total energy available to fluctuations does not depend on the number of dis- 
turbances that are excited, or subsequently generated by nonlinear interactions. 
This is particularly striking when one considers that the number of nonlinear 
modes and theallocationof energy per frequency component in the dual-excitation 
instability is quite different from that of the fi or f2 instabilities. Each instability 
distributes its available energy among all generated fluctuations. The absence 
of a consistent energy allocation pattern indicates that the important constraint 
on fluctuation energy is the total energy available, and this in turn must be 
determined by the mean flow. Anincreasein the number of frequency components 
does not lead to an increase in fluctuation energy. Instead, a redistribution of 
available energy takes place. 

6. Conclusions 
The experiments show that significant interactions take place between dis- 

turbances in a laminar free shear layer. The instability when two disturbances are 
excited differs in detail from that measured when only one disturbance is excited. 
However, the overall development of instability remains the same and seems 
to be dictated by the mean flow. The interaction of disturbances leads to the 
generation of numerous combination modes of the form (nf2/m) f (pfl/q), 
n , p  = i, 2,3 ,  ..., m, q = 1,2,  and to nonlinear-mode competition. The latter 
behaviour depends on the relative amplitudes of the interacting disturbances, 
and in general the dominant disturbance tends to suppress the growth of the 
other. Disturbance interactions influence the process of finite amplitudeequilibra- 
tion and the results suggest that mean flow distortions may play a primary role 
in the equilibration process. Evidence of finite amplitude triggered instability 
of the difference modef, -fi is found, and the mechanism may be similar to that 
described by Kelly (1967) for the subharmonic mode. The total energy available 
to disturbance fluctuations has an upper bound which does not seem to depend on 
the number of disturbances excited or subsequently generated by nonlinear 
interactions. If many frequency components are generated, as in the dual- 
excitation instability, the disturbance energy is redistributed and not increased. 

The sensitivity of wavenumber selection (in the nonlinear stages of instability) 
to initial and external conditions noticed in this experiment, as well as by Sat0 
(1970) and in the experiments of Snyder (1969) and Coles (1965) on centrifugal 
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instabilities and Chen & Whitehead (1968) on thermal instabilities, points out 
one shortcoming of externally excited instability experiments. Namely, although 
external excitation allows one to conduct experiments which model certain 
explicit features of theoretical models, one is faced with the problem of recognizing 
that in weighting the initial disturbance field in favour of a particular wave- 
number (or pair of wavenumbers) one may force the instability into a configura- 
tion that natural selection processes may not necessarily choose. The resulting 
experimental data must only be interpreted in terms of the constraints one has 
imposed on the flow. The importance of imposed experimental constraints cannot 
be over emphasized. One simple example is the great difference in the shear- 
layer instabilities excited a t  one frequency and at two frequencies simultaneously. 
In  the latter case an additional constraint is imposed when one chooses the 
relative phase between the two excitation frequencies. Other experiments, not 
reported in this paper, showed that the details of dual-excitation instability, 
such as the strength and order of combination-mode generation, vary as the 
relative phases of the two excitation signals are changed. 
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